Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Res ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520665

RESUMO

Porous metallic prosthesis components can now be manufactured using additive manufacturing techniques, and may prove beneficial for promoting bony ingrowth, for accommodating drug delivery systems, and for reducing stress shielding. Using finite element modeling techniques, 36 scenarios (three porous stems, three bone densities, and four held arm positions) were analysed to assess the viability of porous humeral stems for use in total shoulder arthroplasty, and their resulting mechanobiological impact on the surrounding humerus bone. All three porous stems were predicted to experience stresses below the yield strength of Ti6Al4V (880 MPa) and to be capable of withstanding more than 10 million cycles of each loading scenario before failure. There was an indication that within an 80 mm region of the proximal humerus, there would be a reduction in bone resorption as stem porosity increased. Overall, this study shows promise that these porous structures are mechanically viable for incorporation into permanent shoulder prostheses to combat orthopedic infections.

2.
Am J Sports Med ; 52(4): 909-918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38385189

RESUMO

BACKGROUND: Concerns have arisen that anterior cruciate ligament reconstruction (ACLR) with lateral extra-articular tenodesis (LET) may accelerate the development of posttraumatic osteoarthritis in the lateral compartment of the knee. PURPOSE/HYPOTHESIS: The purpose of this study was to evaluate whether the augmentation of ACLR with LET affects the quality of lateral compartment articular cartilage on magnetic resonance imaging (MRI) at 2 years postoperatively. We hypothesized that there would be no difference in T1rho and T2 relaxation times when comparing ACLR alone with ACLR + LET. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: A consecutive subgroup of patients at the Fowler Kennedy Sport Medicine Clinic participating in the STABILITY 1 Study underwent bilateral 3-T MRI at 2 years after surgery. The primary outcome was T1rho and T2 relaxation times. Articular cartilage in the lateral compartment was manually segmented into 3 regions of the tibia (lateral tibia [LT]-1 to LT-3) and 5 regions of the femur (lateral femoral condyle [LFC]-1 to LFC-5). Analysis of covariance was used to compare relaxation times between groups, adjusted for lateral meniscal tears and treatment, cartilage and bone marrow lesions, contralateral relaxation times, and time since surgery. Semiquantitative MRI scores according to the Anterior Cruciate Ligament OsteoArthritis Score were compared between groups. Correlations were used to determine the association between secondary outcomes (including results of the International Knee Documentation Committee score, Knee injury and Osteoarthritis Outcome Score, Lower Extremity Functional Scale, 4-Item Pain Intensity Measure, hop tests, and isokinetic quadriceps and hamstring strength tests) and cartilage relaxation. RESULTS: A total of 95 participants (44 ACLR alone, 51 ACLR + LET) with a mean age of 18.8 years (61.1% female [58/95]) underwent 2-year MRI (range, 20-36 months). T1rho relaxation times were significantly elevated for the ACLR + LET group in LT-1 (37.3 ± 0.7 ms vs 34.1 ± 0.8 ms, respectively; P = .005) and LFC-2 (43.9 ± 0.9 ms vs 40.2 ± 1.0 ms, respectively; P = .008) compared with the ACLR alone group. T2 relaxation times were significantly elevated for the ACLR + LET group in LFC-1 (51.2 ± 0.7 ms vs 49.1 ± 0.7 ms, respectively; P = .03) and LFC-4 (45.9 ± 0.5 ms vs 44.2 ± 0.6 ms, respectively; P = .04) compared with the ACLR alone group. All effect sizes were small to medium. There was no difference in Anterior Cruciate Ligament OsteoArthritis Scores between groups (P = .99). Weak negative associations (rs = -0.27 to -0.22; P < .05) were found between relaxation times and quadriceps and hamstring strength in the anterolateral knee, while all other correlations were nonsignificant (P > .05). CONCLUSION: Increased relaxation times demonstrating small to medium effect sizes suggested early biochemical changes in articular cartilage of the anterolateral compartment in the ACLR + LET group compared with the ACLR alone group. Further evidence and long-term follow-up are needed to better understand the association between these results and the potential risk of the development of osteoarthritis in our patient cohort.


Assuntos
Lesões do Ligamento Cruzado Anterior , Cartilagem Articular , Osteoartrite , Tenodese , Humanos , Feminino , Adolescente , Masculino , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Cartilagem Articular/patologia , Tenodese/métodos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética/métodos , Osteoartrite/cirurgia , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/complicações
3.
J Mech Behav Biomed Mater ; 146: 106076, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598509

RESUMO

Porous additively-manufactured structures could have a niche in orthopaedic implants, due to their potential to reduce stiffness (stress-shielding), improve bony ingrowth, and potential to house reservoirs of drug-eluting non-structural biomaterials. Computer aided design and finite element (FE) modelling plays an important role in the design of porous structured biomedical implants; however it is important to validate both their static and fatigue behaviours using experimental testing. This study compared the mechanical behaviors of titanium cylindrical gyroid structures of varying porosities using physical testing of additively manufactured prototypes and FE models. There was agreement in the measured and predicted relationships between porosity and apparent modulus of elasticity. As porosity increased (and wall thickness decreased), the structures failed at a lower number of cycles when loaded at the same percentage of their yield strengths. Calibration of the fatigue strength coefficient from a previously published value of 1586.5 MPa-1225 MPa greatly improved the fatigue life prediction accuracy for all the gyroid structures. Nevertheless, differences of up to 54% in the predicted versus experimental fatigue lives remained, which could be attributed to difficulties with how the precise time and location of failure is defined in the simulations, and/or minor differences in nominal and actual porosities. Although further calibration and validation should be explored, this study demonstrates that static and fatigue FE-modelling techniques could be used to aid in the design of porous prosthetics.


Assuntos
Temperatura Alta , Titânio , Ligas , Lasers , Teste de Materiais
4.
J Shoulder Elbow Surg ; 30(2): 421-429, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32580021

RESUMO

BACKGROUND: Several in vitro studies have investigated the biomechanics of reverse total shoulder arthroplasty (RTSA); however, few in vivo studies exist. The purpose of this study was to examine in vivo RTSA contact mechanics in clinically relevant arm positions. Our hypothesis was that contact would preferentially occur in the inferior region of the polyethylene liner. METHODS: Forty patients receiving a primary RTSA were recruited for a prospective cohort study. All patients received the same implant design with a nonretentive liner. Stereo radiographs were taken at maximal active range of motion. Model-based radiostereometric analysis was used to identify implant position. Contact area between the polyethylene and glenosphere was measured as the geometric intersection of the 2 components and compared with respect to polyethylene liner size, arm position, and relative position within the liner. RESULTS: There were no differences in the proportion of contact area in any arm position between polyethylene liner sizes, ranging from 30% ± 17% to 38% ± 23% for 36-mm liners and 32% ± 21% to 41% ± 25% for 42-mm liners. Contact was equally distributed between the superior and inferior halves of the liner at each arm position (P = .06-.79); however, greater contact area was observed in the outer radius of the liner when the arm was flexed (P = .002). CONCLUSION: This study highlights that contact mechanics are similar between 36- and 42-mm liners. Contact area is generally equally distributed throughout the liner across the range of motion and not preferentially in the inferior region as hypothesized.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Humanos , Estudos Prospectivos , Desenho de Prótese , Amplitude de Movimento Articular , Articulação do Ombro/diagnóstico por imagem , Articulação do Ombro/cirurgia
5.
Clin Biomech (Bristol, Avon) ; 41: 1-8, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27842233

RESUMO

BACKGROUND: Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. METHODS: Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. FINDINGS: Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm3 density. INTERPRETATION: In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions.


Assuntos
Osso Esponjoso/fisiologia , Osso Cortical/fisiologia , Análise de Elementos Finitos , Tíbia/fisiologia , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Módulo de Elasticidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/fisiopatologia , Tomografia Computadorizada por Raios X
6.
Biomed Microdevices ; 18(5): 78, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27523472

RESUMO

We describe a simple fabrication technique - targeted towards non-specialists - that allows for the production of leak-proof polydimethylsiloxane (PDMS) microfluidic devices that are compatible with live-cell microscopy. Thin PDMS base membranes were spin-coated onto a glass-bottom cell culture dish and then partially cured via microwave irradiation. PDMS chips were generated using a replica molding technique, and then sealed to the PDMS base membrane by microwave irradiation. Once a mold was generated, devices could be rapidly fabricated within hours. Fibronectin pre-treatment of the PDMS improved cell attachment. Coupling the device to programmable pumps allowed application of precise fluid flow rates through the channels. The transparency and minimal thickness of the device enabled compatibility with inverted light microscopy techniques (e.g. phase-contrast, fluorescence imaging, etc.). The key benefits of this technique are the use of standard laboratory equipment during fabrication and ease of implementation, helping to extend applications in live-cell microfluidics for scientists outside the engineering and core microdevice communities.


Assuntos
Dispositivos Lab-On-A-Chip , Microscopia/instrumentação , Células 3T3 , Animais , Sobrevivência Celular , Dimetilpolisiloxanos , Desenho de Equipamento , Hidrodinâmica , Camundongos , Nylons
7.
PLoS One ; 11(7): e0159541, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27459189

RESUMO

OBJECTIVE: To assess whether the transient stresses of foot impact with the ground are similar to those found during midstance loading and if the location of high stress correlate with the sites most commonly associated with mechanically induced osteoarthritis (OA). We compared impact stresses in subchondral bone between two subject-specific, three-dimensional, finite-element models of the equine metacarpophalangeal (MCP) joint-one with advanced OA and one healthy, and with similar published data on the stresses that occur at midstance. METHODS: Two right MCP joints (third metacarpal and proximal phalanx) were scanned using micro-computed tomography (µCT). Images were segmented, and meshed using modified 10-node quadratic tetrahedral elements. Bone material properties were assigned based on the bone density. An impact velocity of 3.55 m/s was applied to each model and contact pressures and stress distribution were calculated for each. In a separate iteration, the third metacarpal was loaded statically. A sampling grid of 160 equidistant points was superimposed over selected slices, and average peak stresses were calculated for 6 anatomical regions. Within-region maximal peak and average von Mises stresses were compared between healthy and OA bones in both midstance and impact loading. RESULTS: Average impact stresses across all regions, in both locations (palmar and dorsal) were greater in the OA model. Highest impact stresses were located in the dorsal medial condyle in the healthy (12.8 MPa) and OA (14.1MPa) models, and were lowest in the palmar medial and lateral parasagittal grooves in the healthy (5.94 MPa) and OA (7.07 MPa) models. The healthy static model had higher peak (up to 49.7% greater) and average (up to 38.6% greater) stresses in both locations and across all regions compared to the OA static model. CONCLUSIONS: Under simulated footfall a trot, loading on the dorsal aspect of the third metacarpal at impact created stresses similar to those found during midstance. The high accelerations that occur under impact loading are likely responsible for creating the high stresses, as opposed to midstance loading where the high stresses are the result of high mass loading. Although the stress magnitudes were found to be similar among the two loading conditions, the location of the high stress loading occurred in sites that are not typically associated with osteoarthritic changes.


Assuntos
Análise de Elementos Finitos , Ossos Metacarpais , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Densidade Óssea , Modelos Animais de Doenças , Cavalos , Articulação Metacarpofalângica , Modelos Teóricos , Osteoartrite/diagnóstico por imagem , Osteoartrite/etiologia , Osteoartrite/patologia , Pressão , Microtomografia por Raio-X
8.
Clin Biomech (Bristol, Avon) ; 30(7): 703-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26024555

RESUMO

BACKGROUND: Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain initiation. Calculation of bone elastic moduli from image data is a basic step when constructing finite element models. However, different relationships between elastic moduli and imaged density (known as density-modulus relationships) have been reported in the literature. The objective of this study was to apply seven different trabecular-specific and two cortical-specific density-modulus relationships from the literature to finite element models of proximal tibia subchondral bone, and identify the relationship(s) that best predicted experimentally measured local subchondral structural stiffness with highest explained variance and least error. METHODS: Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using published density-modulus relationships and mapped to corresponding finite element models. Proximal tibial structural stiffness values were compared to experimentally measured stiffness values from in-situ macro-indentation testing directly on the subchondral bone surface (47 indentation points). FINDINGS: Regression lines between experimentally measured and finite element calculated stiffness had R(2) values ranging from 0.56 to 0.77. Normalized root mean squared error varied from 16.6% to 337.6%. INTERPRETATION: Of the 21 evaluated density-modulus relationships in this study, Goulet combined with Snyder and Schneider or Rho appeared most appropriate for finite element modeling of local subchondral bone structural stiffness. Though, further studies are needed to optimize density-modulus relationships and improve finite element estimates of local subchondral bone structural stiffness.


Assuntos
Módulo de Elasticidade/fisiologia , Análise de Elementos Finitos , Osteoartrite do Joelho/fisiopatologia , Tíbia/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea/fisiologia , Cadáver , Força Compressiva/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/diagnóstico por imagem , Análise de Regressão , Estresse Mecânico , Tíbia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Malha Trabecular/fisiologia
9.
J Biomech Eng ; 137(3)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25363041

RESUMO

High-tibial osteotomy (HTO) is a surgical technique aimed at shifting load away from one tibiofemoral compartment, in order the reduce pain and progression of osteoarthritis (OA). Various implants have been designed to stabilize the osteotomy and previous studies have been focused on determining primary stability (a global measure) that these designs provide. It has been shown that the local mechanical environment, characterized by bone strains and segment micromotion, is important in understanding healing and these data are not currently available. Finite element (FE) modeling was utilized to assess the local mechanical environment provided by three different fixation plate designs: short plate with spacer, long plate with spacer and long plate without spacer. Image-based FE models of the knee were constructed from healthy individuals (N = 5) with normal knee alignment. An HTO gap was virtually added without changing the knee alignment and HTO implants were inserted. Subsequently, the local mechanical environment, defined by bone compressive strain and wedge micromotion, was assessed. Furthermore, implant stresses were calculated. Values were computed under vertical compression in zero-degree knee extension with loads set at 1 and 2 times the subject-specific body weight (1 BW, 2 BW). All studied HTO implant designs provide an environment for successful healing at 1 BW and 2 BW loading. Implant von Mises stresses (99th percentile) were below 60 MPa in all experiments, below the material yield strength and significantly lower in long spacer plates. Volume fraction of high compressive strain ( > 3000 microstrain) was below 5% in all experiments and no significant difference between implants was detected. Maximum vertical micromotion between bone segments was below 200 µm in all experiments and significantly larger in the implant without a tooth. Differences between plate designs generally became apparent only at 2 BW loading. Results suggest that with compressive loading of 2 BW, long spacer plates experience the lowest implant stresses, and spacer plates (long or short) result in smaller wedge micromotion, potentially beneficial for healing. Values are sensitive to subject bone geometry, highlighting the need for subject-specific modeling. This study demonstrates the benefits of using image-based FE modeling and bone theory to fine-tune HTO implant design.


Assuntos
Placas Ósseas , Análise de Elementos Finitos , Fenômenos Mecânicos , Osteotomia , Tíbia/cirurgia , Fenômenos Biomecânicos , Fêmur/fisiologia , Humanos , Movimento (Física) , Desenho de Prótese , Estresse Mecânico , Tíbia/fisiologia , Cicatrização
10.
PLoS One ; 9(7): e98209, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25007248

RESUMO

Atherosclerotic disease, and the subsequent complications of thrombosis and plaque rupture, has been associated with local shear stress. In the diseased carotid artery, local variations in shear stress are induced by various geometrical features of the stenotic plaque. Greater stenosis severity, plaque eccentricity (symmetry) and plaque ulceration have been associated with increased risk of cerebrovascular events based on clinical trial studies. Using particle image velocimetry, the levels and patterns of shear stress (derived from both laminar and turbulent phases) were studied for a family of eight matched-geometry models incorporating independently varied plaque features - i.e. stenosis severity up to 70%, one of two forms of plaque eccentricity, and the presence of plaque ulceration). The level of laminar (ensemble-averaged) shear stress increased with increasing stenosis severity resulting in 2-16 Pa for free shear stress (FSS) and approximately double (4-36 Pa) for wall shear stress (WSS). Independent of stenosis severity, marked differences were found in the distribution and extent of shear stress between the concentric and eccentric plaque formations. The maximum WSS, found at the apex of the stenosis, decayed significantly steeper along the outer wall of an eccentric model compared to the concentric counterpart, with a 70% eccentric stenosis having 249% steeper decay coinciding with the large outer-wall recirculation zone. The presence of ulceration (in a 50% eccentric plaque) resulted in both elevated FSS and WSS levels that were sustained longer (∼20 ms) through the systolic phase compared to the non-ulcerated counterpart model, among other notable differences. Reynolds (turbulent) shear stress, elevated around the point of distal jet detachment, became prominent during the systolic deceleration phase and was widely distributed over the large recirculation zone in the eccentric stenoses.


Assuntos
Artérias Carótidas/fisiopatologia , Reologia/métodos , Resistência ao Cisalhamento , Estresse Mecânico , Estenose das Carótidas/fisiopatologia , Humanos , Técnicas In Vitro , Modelos Biológicos , Placa Aterosclerótica/fisiopatologia , Reologia/instrumentação
11.
Knee ; 21(4): 801-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24853191

RESUMO

BACKGROUND: Quantitative measurements of damage and wear in orthopaedic components retrieved from patients during revision surgery can provide valuable information. However, to perform these measurements there needs to be an estimate of the original, unworn geometry of the component, often requiring multiple scans of the various sizes of components that have been retrieved. The objective of this study was to determine whether the articular and backside surfaces could be independently segmented from a micro-CT reconstruction of a tibial insert, such that a tibial insert of one thickness could be used as a reference for a tibial insert of a different thickness. METHODS: New tibial inserts of a single width but with six different thicknesses were obtained and scanned with micro-CT. An automated method was developed to computationally segment the articular and backside surfaces of the components. Variability between intact and extracted components was determined. RESULTS: The deviations between the comparisons of the extracted surfaces (range, 0.0004 to 0.010 mm) were less (p<0.001) than the baseline deviation between the intact surfaces (range, 0.0002 to 0.053 mm). CONCLUSIONS: An extracted surface from one insert thickness could be used to accurately represent the surface of an insert of a different thickness. This greatly enhances the feasibility of performing retrieval studies using micro-CT as a quantitative tool, by reducing the costs and time associated with acquiring, scanning, and reconstructing multiple reference tibial insert geometries. CLINICAL RELEVANCE: This will add greater detail to studies of retrieved implants, to better establish how implants are functioning in vivo.


Assuntos
Prótese do Joelho , Microtomografia por Raio-X , Algoritmos , Remoção de Dispositivo , Humanos , Desenho de Prótese
12.
Stud Health Technol Inform ; 196: 436-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732551

RESUMO

In this paper we describe an approach to interactively render ultrasound images for a transesophageal echocardiogram procedure. Our prototype features an animated 3D model of a human heart that is used to synthesize virtual ultrasound images in real-time. The user can control the probe and interact with the simulator via a GUI or with a haptics device. The ultrasound plane is rendered in a classical 2D view but can also be displayed in the context of the 3D heart model.


Assuntos
Simulação por Computador , Ecocardiografia Transesofagiana/métodos , Modelos Cardiovasculares , Humanos
13.
Proc Inst Mech Eng H ; 227(8): 884-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23636769

RESUMO

To perform wear measurements on retrieved joint replacement implants, a reference geometry of the implant's original state is required. Since implants are rarely individually scanned before implantation, a different, new implant of the same kind and size is frequently used. However, due to manufacturing variability, errors may be introduced into these measurements, as the dimensions between the retrieved and reference components may not be exactly the same. The hypothesis of this study was that new polyethylene tibial inserts from different manufacturing lots would demonstrate greater variability than those from the same lot. In total, 12 new tibial inserts of the same model and size were obtained, 5 from the same lot and the remainder from different lots. The geometry of each tibial insert was obtained using microcomputed tomography. Measurements of tibial insert volume, thickness, and three-dimensional surface deviations were obtained and compared between tibial inserts from the same and different manufacturing lots. Greater variability was found for the tibial inserts from different manufacturing lots for all types of measurements, including a fourfold difference in volume variability (p < 0.001) and a maximum of 0.21 mm difference in thickness (p < 0.001). Investigators should be aware of this potential confounding error and take steps to minimize it, such as by averaging together the geometries of multiple new components from different manufacturing lots for use as the reference geometry.


Assuntos
Prótese do Joelho , Polietileno/química , Desenho de Prótese , Teste de Materiais , Estresse Mecânico , Propriedades de Superfície , Microtomografia por Raio-X
14.
Phys Med Biol ; 58(9): 2751-67, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23552105

RESUMO

An in vivo method to measure wear in total knee replacements was developed using dynamic single-plane fluoroscopy. A dynamic, anthropomorphic total knee replacement phantom with interchangeable, custom-fabricated components of known wear volume was created, and dynamic imaging was performed. For each frame of the fluoroscopy data, the relative location of the femoral and tibial components were determined, and the apparent intersection of the femoral component with the tibial insert was used to calculate wear volume, wear depth, and frequency of intersection. No difference was found between the measured and true wear volumes. The precision of the measurements was ±39.7 mm(3) for volume and ±0.126 mm for wear depth. The results suggest the system is capable of tracking wear volume changes across multiple time points in patients. As a dynamic technique, this method can provide both kinematic and wear measurements that may be useful for evaluating new implant designs for total knee replacements.


Assuntos
Artroplastia do Joelho , Próteses e Implantes , Radiografia/métodos , Desenho Assistido por Computador , Humanos , Joelho/diagnóstico por imagem , Joelho/fisiologia , Imagens de Fantasmas , Suporte de Carga
15.
J Funct Biomater ; 3(1): 209-24, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-24956525

RESUMO

Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1-100 Hz) mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers), attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

16.
J Arthroplasty ; 26(3): 497-503, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20347254

RESUMO

Geometric wear analysis techniques require unworn geometries to serve as a reference in wear measurement. A method to create a reference geometrical model is described for retrieval studies when the actual unworn geometry is unavailable. Never-implanted tibial inserts were scanned with micro-computed tomography. Two, 3, or 6 insert surfaces were coaligned and averaged to create reference geometries. Individual inserts were compared with each other (manufacturing variability) and with the reference geometries (reference variability). The 3-dimensional deviations between the surfaces were recorded. The reference variability was reduced to 8.3 ± 39 µm, vs manufacturing variability of 15 ± 59 µm. Deviations were smallest on the articular surfaces where most wear occurs and were significantly less than the reported insert wear rate of 20 µm/y.


Assuntos
Artroplastia do Joelho/instrumentação , Prótese do Joelho , Teste de Materiais/métodos , Modelos Teóricos , Polietileno , Desenho de Prótese , Análise de Falha de Equipamento , Humanos , Valores de Referência , Tíbia , Tomografia Computadorizada por Raios X
17.
Bone ; 48(3): 639-46, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21094285

RESUMO

AIM OF STUDY: To investigate the role of intra-osseous lesions in advancing the pathogenesis of Osteoarthritis (OA) of the knee, using Finite Element Modeling (FEM) in conjunction with high-resolution imaging techniques. METHODS: Twenty early stage OA patients (≤ Grade 2 radiographic score) were scanned with a prototype, cone-beam CT system. Scans encompassed the mid-shaft of the femur to the diaphysis of the proximal tibia. Individual bones were segmented to create 3D geometric models that were transferred to FE software for loading experiments. Patient-specific, inhomogeneous material properties were derived from the CT images and mapped directly to the FE models. Duplicate models were also created, with a 3D sphere (range 3-12 mm) introduced into a weight-bearing region of the joint, mimicking the size, location, and composition of a subchondral bone cyst (SBC). A spherical shell extending 1mm radially around the SBC served as the sample volume for measurements of von Mises equivalent stress. Both models were vertically loaded with 750 N, or approximately 1 body weight during a single-leg stance. RESULTS: All FE models exhibited a physiologically realistic weight-bearing distribution of stress, which initiated at the joint surface and extended to the cortical bone. Models that contained the SBC experienced a nearly two-fold increase in stress (0.934 ± 0.073 and 1.69 ± 0.159 MPa, for the non-SBC and SBC models, respectively) within the bone adjacent to the SBC. In addition, there was a positive correlation found between the diameter of the SBC and the resultant intra-osseous stress under load (p = 0.004). CONCLUSIONS: Our results provide insights into the mechanism by which SBC may accelerate OA, leading to greater pain and disability. Based on these findings, we feel that patient-derived FE models of the OA knee - utilizing in vivo imaging data - present a tremendous potential for monitoring joint mechanics under physiological loads.


Assuntos
Cistos Ósseos/complicações , Cistos Ósseos/patologia , Osso e Ossos/patologia , Análise de Elementos Finitos , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/patologia , Estresse Fisiológico , Cistos Ósseos/fisiopatologia , Osso e Ossos/fisiopatologia , Fêmur/patologia , Fêmur/fisiopatologia , Humanos , Modelos Lineares , Modelos Biológicos , Osteoartrite do Joelho/fisiopatologia , Tíbia/patologia , Tíbia/fisiopatologia , Suporte de Carga/fisiologia
18.
J Long Term Eff Med Implants ; 20(1): 49-56, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21284588

RESUMO

Total joint replacements can be subject to the loss of polyethylene material due to wear, leading to osteolysis and decreased implant longevity. Micro-computed tomography (micro-CT) techniques have recently been developed to calculate 3D surface deviations in worn implant components. We describe a micro-CT technique to measure the volume of the surface deviations (volume of wear plus creep) within a specific region or compartment, and report its repeatability and reproducibility. Six worn polyethylene tibial inserts were scanned using a laboratory micro-CT scanner and subsequently reconstructed at 50 µm voxel spacing. A previously developed custom software application was used to quantify the 3D surface deviations between the worn tibial inserts and an unworn reference geometry. Three observers (two trained and one expert) used new custom software to manually outline the localized regions of surface deviation (three times for each of the worn inserts) and calculate the volume of the deviations. The overall intraobserver variability in the surface deviation volumes was 3.6% medially and 1.1% laterally. The overall interobserver variability was 4.8% medially and 1.7% laterally. Placement of points in outlining the region of deviation contributed the greatest variability to the measurements. Repeatability and reproducibility of the volume measurements are similar to measurements of total (nonregional) wear volume including a previous micro-CT technique (10%), fluid displacement (4.8%), and radiographic measurements (15.7%). The principles of this technique can likely be used to measure regional wear and creep volume in knee and hip joint replacement components from wear simulator, pin-on-disk, and retrieval studies.


Assuntos
Prótese Articular , Falha de Prótese , Humanos , Variações Dependentes do Observador , Polietileno , Reprodutibilidade dos Testes , Software , Microtomografia por Raio-X
19.
J Biomech ; 41(15): 3171-6, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18922532

RESUMO

Material property assignment is a critical step in developing subject-specific finite element models of bone. Inhomogeneous material properties are often applied using an equation relating density and elastic modulus, with the density information coming from CT scans of the bone. Very few previous studies have investigated which density-elastic modulus relationships from the literature are most suitable for application in long bone. No such studies have been completed for the ulna. The purpose of this study was to investigate six such density-modulus relationships and compare the results to experimental strains from eight cadaveric ulnae. Subject-specific finite element models were developed for each bone using micro-CT scans. Six density-modulus equations were trialed in each bone, resulting in a total of 48 models. Data from a previously completed experimental study in which each bone was instrumented with twelve strain gauges were used for comparison. Although the relationship that best matched experimental strains was somewhat specimen and location dependent, there were two relations which consistently matched the experimental strains most closely. One of these under-estimated and one over-estimated the experimental strain values, by averages of 15% and 31%, respectively. The results of this study suggest that the ideal relationship for the ulna may lie somewhere in between these two relations.


Assuntos
Densidade Óssea/fisiologia , Modelos Biológicos , Ulna/fisiologia , Idoso , Simulação por Computador , Módulo de Elasticidade , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Teste de Materiais , Estatística como Assunto , Estresse Mecânico
20.
J Biomech Eng ; 130(2): 021015, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18412502

RESUMO

Computational fluid dynamics (CFD) modeling of nominally patient-specific cerebral aneurysms is increasingly being used as a research tool to further understand the development, prognosis, and treatment of brain aneurysms. We have previously developed virtual angiography to indirectly validate CFD-predicted gross flow dynamics against the routinely acquired digital subtraction angiograms. Toward a more direct validation, here we compare detailed, CFD-predicted velocity fields against those measured using particle imaging velocimetry (PIV). Two anatomically realistic flow-through phantoms, one a giant internal carotid artery (ICA) aneurysm and the other a basilar artery (BA) tip aneurysm, were constructed of a clear silicone elastomer. The phantoms were placed within a computer-controlled flow loop, programed with representative flow rate waveforms. PIV images were collected on several anterior-posterior (AP) and lateral (LAT) planes. CFD simulations were then carried out using a well-validated, in-house solver, based on micro-CT reconstructions of the geometries of the flow-through phantoms and inlet/outlet boundary conditions derived from flow rates measured during the PIV experiments. PIV and CFD results from the central AP plane of the ICA aneurysm showed a large stable vortex throughout the cardiac cycle. Complex vortex dynamics, captured by PIV and CFD, persisted throughout the cardiac cycle on the central LAT plane. Velocity vector fields showed good overall agreement. For the BA, aneurysm agreement was more compelling, with both PIV and CFD similarly resolving the dynamics of counter-rotating vortices on both AP and LAT planes. Despite the imposition of periodic flow boundary conditions for the CFD simulations, cycle-to-cycle fluctuations were evident in the BA aneurysm simulations, which agreed well, in terms of both amplitudes and spatial distributions, with cycle-to-cycle fluctuations measured by PIV in the same geometry. The overall good agreement between PIV and CFD suggests that CFD can reliably predict the details of the intra-aneurysmal flow dynamics observed in anatomically realistic in vitro models. Nevertheless, given the various modeling assumptions, this does not prove that they are mimicking the actual in vivo hemodynamics, and so validations against in vivo data are encouraged whenever possible.


Assuntos
Circulação Cerebrovascular , Aneurisma Intracraniano/fisiopatologia , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Angiografia Cerebral , Simulação por Computador , Humanos , Imageamento Tridimensional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...